Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 137(22): 1683-1697, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37986614

RESUMEN

O-Linked attachment of ß-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.


Asunto(s)
Acetilglucosaminidasa , Procesamiento Proteico-Postraduccional , Animales , Fosforilación , Nutrientes , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo
2.
iScience ; 26(9): 107542, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636076

RESUMEN

Intracellular peptides (InPeps) generated by the orchestrated action of the proteasome and intracellular peptidases have biological and pharmacological significance. Here, human plasma relative concentration of specific InPeps was compared between 175 patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and 45 SARS-CoV-2 non-infected patients; 2,466 unique peptides were identified, of which 67% were InPeps. The results revealed differences of a specific group of peptides in human plasma comparing non-infected individuals to patients infected by SARS-CoV-2, following the results of the semi-quantitative analyses by isotope-labeled electrospray mass spectrometry. The protein-protein interactions networks enriched pathways, drawn by genes encoding the proteins from which the peptides originated, revealed the presence of the coronavirus disease/COVID-19 network solely in the group of patients fatally infected by SARS-CoV-2. Thus, modulation of the relative plasma levels of specific InPeps could be employed as a predictive tool for disease outcome.

3.
Am J Hypertens ; 36(10): 542-550, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37439351

RESUMEN

BACKGROUND: The resolution of inflammation is an active phenomenon important for switching off inflammatory processes once the harmful stimuli are removed and facilitate the return to homeostasis. Specialized pro-resolving mediators (SPMs), such as lipoxin A4, resolvin D1, and resolvin E1, derived from ω-3 or ω-6 polyunsaturated fatty acids, are crucial for the resolution of inflammation. We hypothesized that SPMs are decreased in hypertension which contributes to the acetylcholine-induced contraction in resistance arteries, which are well known to be mediated by leukotrienes and prostaglandins. Moreover, treatment with SPMs will decrease this contraction via formyl peptide receptor-2 (FPR-2) in resistance arteries from spontaneously hypertensive rats (SHR). METHODS AND RESULTS: We performed a comprehensive eicosanoid lipid panel analysis, and our data showed for the first time that precursors of SPMs are decreased in SHR, limiting the production of SPMs and resolution of inflammation in vivo. This phenomenon was associated with an increase in lipid peroxidation in resistance arteries. Although SPMs did not abolish acetylcholine-induced contraction, these lipid mediators improved endothelial function in arteries from SHR via FPR-2 activation at nanomolar concentrations. SPMs also buffered TNF-α-induced reactive oxygen species generation in endothelial cells from C57Bl/6 mice. CONCLUSIONS: We suggest that FPR-2 and SPMs could be revealed as a new target or therapeutic agent to improve vascular function in arteries from hypertensive rats.


Asunto(s)
Acetilcolina , Receptores de Formil Péptido , Animales , Ratones , Ratas , Ácidos Docosahexaenoicos/farmacología , Células Endoteliales , Inflamación , Mediadores de Inflamación
4.
Am J Physiol Heart Circ Physiol ; 324(4): H417-H429, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36705993

RESUMEN

α-Adrenergic receptors are crucial regulators of vascular hemodynamics and essential pharmacological targets for cardiovascular diseases. With aging, there is an increase in sympathetic activation, which could contribute to the progression of aging-associated cardiovascular dysfunction, including stroke. Nevertheless, there is little information directly associating adrenergic receptor dysfunction in the blood vessels of aged females. This study determined the role of a-adrenergic receptors in carotid dysfunction of senescent female mice (accelerated-senescence prone, SAMP8), compared with a nonsenescent (accelerated-senescence prone, SAMR1). Vasoconstriction to phenylephrine (Phe) was markedly increased in common carotid artery of SAMP8 [area under the curve (AUC), 527 ± 53] compared with SAMR1 (AUC, 334 ± 30, P = 0.006). There were no changes in vascular responses to the vasoconstrictor agent U46619 or the vasodilators acetylcholine (ACh) and sodium nitroprusside (NPS). Hyperactivity to Phe in female SAMP8 was reduced by cyclooxygenase-1 and cyclooxygenase-2 inhibition and associated with augmented ratio of TXA2/PGI2 release (SAMR1, 1.1 ± 0.1 vs. SAMP8, 2.1 ± 0.3, P = 0.007). However, no changes in cyclooxygenase expression were seen in SAMP8 carotids. Selective α1A-receptor antagonism markedly reduced maximal contraction, whereas α1D antagonism induced a minor shift in Phe contraction in SAMP8 carotids. Ligand binding analysis revealed a threefold increase of α-adrenergic receptor density in smooth muscle cells (VSMCs) of SAMP8 vs. SAMR1. Phe rapidly increased intracellular calcium (Cai2+) in VSMCs via the α1A-receptor, with a higher peak in VSMCs from SAMP8. In conclusion, senescence intensifies vasoconstriction mediated by α1A-adrenergic signaling in the carotid of female mice by mechanisms involving increased Cai2+ and release of cyclooxygenase-derived prostanoids.NEW & NOTEWORTHY The present study provides evidence that senescence induces hyperreactivity of α1-adrenoceptor-mediated contraction of the common carotid. Impairment of α1-adrenoceptor responses is linked to increased Ca2+ influx and release of COX-derived vasoconstrictor prostanoids, contributing to carotid dysfunction in the murine model of female senescence (SAMP8). Increased reactivity of the common carotid artery during senescence may lead to morphological and functional changes in arteries of the cerebral microcirculation and contribute to cognitive decline in females. Because the elderly population is growing, elucidating the mechanisms of aging- and sex-associated vascular dysfunction is critical to better direct pharmacological and lifestyle interventions to prevent cardiovascular risk in both sexes.


Asunto(s)
Prostaglandinas , Vasoconstrictores , Anciano , Humanos , Masculino , Ratones , Femenino , Animales , Vasoconstrictores/farmacología , Ciclooxigenasa 1 , Prostaglandinas/metabolismo , Envejecimiento/metabolismo , Fenilefrina/farmacología , Ciclooxigenasa 2
5.
J Hypertens ; 40(11): 2111-2119, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35969209

RESUMEN

Hypertension is the most important risk factor for the development of terminal cardiovascular diseases, such as heart failure, chronic kidney disease, and atherosclerosis. Lifestyle interventions to lower blood pressure are generally desirable prior to initiating pharmaceutical drug treatments, which may have undesirable side effects. Ketogenic interventions are popular but the scientific literature supporting their efficacy is specific to certain interventions and outcomes in animal models and patient populations. For example, although caloric restriction has its own inherent difficulties (e.g. it requires high levels of motivation and adherence is difficult), it has unequivocally been associated with lowering blood pressure in hypertensive patients. On the other hand, the antihypertensive efficacy of ketogenic diets is inconclusive, and this is surprising, given that these diets have been largely helpful in mitigating metabolic syndrome and promoting longevity. It is possible that side effects associated with ketogenic diets (e.g. dyslipidemia) aggravate the hypertensive phenotype. However, given the recent data from our group, and others, reporting that the most abundant ketone body, ß-hydroxybutyrate, can have positive effects on endothelial and vascular health, there is hope that ketone bodies can be harnessed as a therapeutic strategy to combat hypertension. Therefore, we conclude this review with a summary of the type and efficacy of ketone supplements. We propose that ketone supplements warrant investigation as low-dose antihypertensive therapy that decreases total peripheral resistance with minimal adverse side effects.


Asunto(s)
Hipertensión , Cuerpos Cetónicos , Ácido 3-Hidroxibutírico/metabolismo , Animales , Antihipertensivos/uso terapéutico , Hipertensión/tratamiento farmacológico , Cuerpos Cetónicos/metabolismo , Cuerpos Cetónicos/uso terapéutico
6.
Front Physiol ; 13: 787617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360231

RESUMEN

A growing body of evidence highlights that several insults during pregnancy impact the vascular function and immune response of the male and female offspring. Overactivation of the immune system negatively influences cardiovascular function and contributes to cardiovascular disease. In this review, we propose that modulation of the immune system is a potential link between prenatal stress and offspring vascular dysfunction. Glucocorticoids are key mediators of stress and modulate the inflammatory response. The potential mechanisms whereby prenatal stress negatively impacts vascular function in the offspring, including poor hypothalamic-pituitary-adrenal axis regulation of inflammatory response, activation of Th17 cells, renin-angiotensin-aldosterone system hyperactivation, reactive oxygen species imbalance, generation of neoantigens and TLR4 activation, are discussed. Alterations in the immune system by maternal stress during pregnancy have broad relevance for vascular dysfunction and immune-mediated diseases, such as cardiovascular disease.

7.
Br J Pharmacol ; 179(12): 2938-2952, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34978070

RESUMEN

BACKGROUND AND PURPOSE: Metabolic and vascular dysfunction are common features of obesity. Aryl hydrocarbon receptor (AhR) regulates lipid metabolism and vascular homeostasis, but whether vascular AhR are activated in obesity or have a protective and/or harmful effects on vascular function in obesity are unknown. Our study addresses whether AhR activation contributes to obesity-associated vascular dysfunction and the mechanisms involved in these AhR effects. EXPERIMENTAL APPROACH: Male AhR KO (Ahr-/- ) and WT mice were fed either control or a HF (high-fat) diet for 10 weeks. Metabolic and inflammatory parameters were measured in serum and adipose tissue. Vascular reactivity (isometric force) was evaluated using a myography. Endothelial NOS (eNOS) and AhR protein expression was determined by western blot, Cyp1A1 and Nos3 gene expression by RT-PCR and.NO production was quantified by DAF fluorescence. KEY RESULTS: HF diet increased total serum HDL and LDL, as well as vascular AhR protein expression and proinflammatory cytokines in the adipose tissue. HF diet decreased endothelium-dependent vasodilation. AhR deletion protected mice from HF diet-induced dyslipidaemia, weight gain and inflammatory processes. HF diet-induced endothelial dysfunction was attenuated in Ahr-/- mice. Vessels from Ahr-/- mice exhibited a greater NO reserve. In cultured endothelial cells, lysophosphatidylcholine (LPC) a major component of LDL and oxidized LDL [oxLDL]) reduced Nos3 gene expression and NO production. Antagonism of the AhR inhibited LPC effects on endothelial cells and induced decreased endothelium-dependent vasodilation. CONCLUSION AND IMPLICATIONS: AhR deletion attenuates HF diet-induced dyslipidaemia and vascular dysfunction by improving eNOS/NO signalling. Targeting AhRs may prevent obesity-associated vascular dysfunction.


Asunto(s)
Dieta Alta en Grasa , Receptores de Hidrocarburo de Aril , Animales , Dieta Alta en Grasa/efectos adversos , Células Endoteliales/metabolismo , Endotelio Vascular , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Vasodilatación/fisiología
8.
Vascul Pharmacol ; 142: 106946, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34838735

RESUMEN

BACKGROUND AND PURPOSE: Mitochondria play a central role in the host response to viral infection and immunity, being key to antiviral signaling and exacerbating inflammatory processes. Mitochondria and Toll-like receptor (TLR) have been suggested as potential targets in SARS-CoV-2 infection. However, the involvement of TLR9 in SARS-Cov-2-induced endothelial dysfunction and potential contribution to cardiovascular complications in COVID-19 have not been demonstrated. This study determined whether infection of endothelial cells by SARS-CoV-2 affects mitochondrial function and induces mitochondrial DNA (mtDNA) release. We also questioned whether TLR9 signaling mediates the inflammatory responses induced by SARS-CoV-2 in endothelial cells. EXPERIMENTAL APPROACH: Human umbilical vein endothelial cells (HUVECs) were infected by SARS-CoV-2 and immunofluorescence was used to confirm the infection. Mitochondrial function was analyzed by specific probes and mtDNA levels by real-time polymerase chain reaction (RT-PCR). Inflammatory markers were measured by ELISA, protein expression by western blot, intracellular calcium (Ca2+) by FLUOR-4, and vascular reactivity with a myography. KEY RESULTS: SARS-CoV-2 infected HUVECs, which express ACE2 and TMPRSS2 proteins, and promoted mitochondrial dysfunction, i.e. it increased mitochondria-derived superoxide anion, mitochondrial membrane potential, and mtDNA release, leading to activation of TLR9 and NF-kB, and release of cytokines. SARS-CoV-2 also decreased nitric oxide synthase (eNOS) expression and inhibited Ca2+ responses in endothelial cells. TLR9 blockade reduced SARS-CoV-2-induced IL-6 release and prevented decreased eNOS expression. mtDNA increased vascular reactivity to endothelin-1 (ET-1) in arteries from wild type, but not TLR9 knockout mice. These events were recapitulated in serum samples from COVID-19 patients, that exhibited increased levels of mtDNA compared to sex- and age-matched healthy subjects and patients with comorbidities. CONCLUSION AND APPLICATIONS: SARS-CoV-2 infection impairs mitochondrial function and activates TLR9 signaling in endothelial cells. TLR9 triggers inflammatory responses that lead to endothelial cell dysfunction, potentially contributing to the severity of symptoms in COVID-19. Targeting mitochondrial metabolic pathways may help to define novel therapeutic strategies for COVID-19.


Asunto(s)
COVID-19 , ADN Mitocondrial , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células Endoteliales/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , SARS-CoV-2 , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
9.
Life Sci ; 288: 120189, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863798

RESUMEN

The present study determined whether treatment during childhood with topiramate (TPM), a new generation antiepileptic drug, results in altered aortic reactivity in adult male and female rats. We also sought to understand the role of endothelium-derived contractile factors in TPM-induced vascular dysfunction. Male and female Wistar rats were treated with TPM (41 mg/kg/day) or water (TPM vehicle) by gavage during childhood (postnatal day, 16-28). In adulthood, thoracic aorta reactivity to phenylephrine (phenyl), as well as aortic thickness and expression of cyclooxygenases (COX-1 and COX-2), NOX2, and p47phox were evaluated. The aortic response to phenyl was increased in male and female rats from the TPM group when compared with the control group. In TPM male rats, the hyperreactivity to phenyl was abrogated by the inhibition of NADPH oxidase and COX-2, while in female rats, responses were restored only by inhibition of COX-2. In addition, TPM male rats presented aortic hypertrophy and increased expression of NOX-2 and p47phox, while TPM female rats showed increased COX-2 aortic expression. Taken together, for the first-time, the present study provides evidence that treatment with TPM during childhood causes vascular dysfunction in adulthood, and that the mechanism underlying the vascular effects of TPM is sex-specific.


Asunto(s)
Aorta/patología , Regulación de la Expresión Génica/efectos de los fármacos , NADPH Oxidasa 2/metabolismo , NADPH Oxidasas/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Topiramato/toxicidad , Enfermedades Vasculares/patología , Animales , Anticonvulsivantes/toxicidad , Aorta/efectos de los fármacos , Aorta/metabolismo , Femenino , Masculino , NADPH Oxidasa 2/genética , NADPH Oxidasas/genética , Prostaglandina-Endoperóxido Sintasas/genética , Ratas , Ratas Wistar , Factores Sexuales , Enfermedades Vasculares/inducido químicamente , Enfermedades Vasculares/metabolismo
10.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200377

RESUMEN

High levels of aldosterone (Aldo) trigger oxidative stress and vascular dysfunction independent of effects on blood pressure. We sought to determine whether Aldo disrupts Nrf2 signaling, the main transcriptional factor involved in antioxidant responses that aggravate cell injury. Thoracic aorta from male C57Bl/6J mice and cultured human endothelial cells (EA.hy926) were stimulated with Aldo (100 nM) in the presence of tiron [reactive oxygen species (ROS) scavenger, eplerenone [mineralocorticoid receptor (MR) antagonist], and L-sulforaphane (SFN; Nrf2 activator). Thoracic aortas were also isolated from mice infused with Aldo (600 µg/kg per day) for 14 days. Aldo decreased endothelium-dependent vasorelaxation and increased ROS generation, effects prevented by tiron and MR blockade. Pharmacological activation of Nrf2 with SFN abrogated Aldo-induced vascular dysfunction and ROS generation. In EA.hy926 cells, Aldo increased ROS generation, which was prevented by eplerenone, tiron, and SFN. At short times, Aldo-induced ROS generation was linked to increased Nrf2 activation. However, after three hours, Aldo decreased the nuclear accumulation of Nrf2. Increased Keap1 protein expression, but not activation of p38 MAPK, was linked to Aldo-induced reduced Nrf2 activity. Arteries from Aldo-infused mice also exhibited decreased nuclear Nrf2 and increased Keap1 expression. Our findings suggest that Aldo reduces vascular Nrf2 transcriptional activity by Keap1-dependent mechanisms, contributing to mineralocorticoid-induced vascular dysfunction.


Asunto(s)
Aldosterona/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores de Mineralocorticoides/química , Enfermedades Vasculares/patología , Animales , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas de Receptores de Mineralocorticoides/farmacología , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Enfermedades Vasculares/inducido químicamente , Enfermedades Vasculares/metabolismo
11.
Life Sci ; 276: 119376, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33781826

RESUMEN

The severe forms and worsened outcomes of COVID-19 (coronavirus disease 19) are closely associated with hypertension and cardiovascular disease. Endothelial cells express Angiotensin-Converting Enzyme 2 (ACE2), which is the entrance door for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The hallmarks of severe illness caused by SARS-CoV-2 infection are increased levels of IL-6, C-reactive protein, D-dimer, ferritin, neutrophilia and lymphopenia, pulmonary intravascular coagulopathy and microthrombi of alveolar capillaries. The endothelial glycocalyx, a proteoglycan- and glycoprotein-rich layer covering the luminal side of endothelial cells, contributes to vascular homeostasis. It regulates vascular tonus and permeability, prevents thrombosis, and modulates leukocyte adhesion and inflammatory response. We hypothesized that cytokine production and reactive oxygen species (ROS) generation associated with COVID-19 leads to glycocalyx degradation. A cohort of 20 hospitalized patients with a confirmed COVID-19 diagnosis and healthy subjects were enrolled in this study. Mechanisms associated with glycocalyx degradation in COVID-19 were investigated. Increased plasma concentrations of IL-6 and IL1-ß, as well as increased lipid peroxidation and glycocalyx components were detected in plasma from COVID-19 patients compared to plasma from healthy subjects. Plasma from COVID-19 patients induced glycocalyx shedding in cultured human umbilical vein endothelial cells (HUVECs) and disrupted redox balance. Treatment of HUVECs with low molecular weight heparin inhibited the glycocalyx perturbation. In conclusion, plasma from COVID-19 patients promotes glycocalyx shedding and redox imbalance in endothelial cells, and heparin treatment potentially inhibits glycocalyx disruption.


Asunto(s)
COVID-19/sangre , COVID-19/patología , Glicocálix/patología , Heparina/farmacología , Anciano , Trastornos de la Coagulación Sanguínea/sangre , Trastornos de la Coagulación Sanguínea/virología , COVID-19/metabolismo , Prueba de COVID-19 , Estudios de Casos y Controles , Adhesión Celular/fisiología , Endotelio Vascular/metabolismo , Femenino , Glicocálix/metabolismo , Glicocálix/virología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-1beta/sangre , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Oxidación-Reducción , SARS-CoV-2 , Trombosis/metabolismo
12.
Front Aging ; 2: 727604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35821995

RESUMEN

Increasing scientific interest has been directed to sex as a biological and decisive factor on several diseases. Several different mechanisms orchestrate vascular function, as well as vascular dysfunction in cardiovascular and metabolic diseases in males and females. Certain vascular sex differences are present throughout life, while others are more evident before the menopause, suggesting two important and correlated drivers: genetic and hormonal factors. With the increasing life expectancy and aging population, studies on aging-related diseases and aging-related physiological changes have steeply grown and, with them, the use of aging animal models. Mouse and rat models of aging, the most studied laboratory animals in aging research, exhibit sex differences in many systems and physiological functions, as well as sex differences in the aging process and aging-associated cardiovascular changes. In the present review, we introduce the most common aging and senescence-accelerated animal models and emphasize that sex is a biological variable that should be considered in aging studies. Sex differences in the cardiovascular system, with a focus on sex differences in aging-associated vascular alterations (endothelial dysfunction, remodeling and oxidative and inflammatory processes) in these animal models are reviewed and discussed.

13.
Free Radic Biol Med ; 162: 615-635, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248264

RESUMEN

Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.


Asunto(s)
Óxido Nítrico , Superóxidos , Antioxidantes/farmacología , Homeostasis , Peróxido de Hidrógeno , Oxidación-Reducción , Especies Reactivas de Oxígeno
14.
Front Physiol ; 9: 490, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867542

RESUMEN

Postmenopausal period has been associated to different symptoms such as hot flashes, vulvovaginal atrophy, hypoactive sexual desire disorder (HSDD) and others. Clinical studies have described postmenopausal women presenting HSDD can benefit from the association of testosterone to conventional hormonal therapy. Testosterone has been linked to development of cardiovascular diseases including hypertension and it also increases cytochrome P-450-induced 20-HETE synthesis which in turn results in vascular dysfunction. However, the effect of testosterone plus estrogen in the cardiovascular system is still very poorly studied. The aim of the present study is to evaluate the role of cytochrome P-450 pathway in a postmenopausal hypertensive female treated with testosterone plus estrogen. For that, hypertensive ovariectomized rats (OVX-SHR) were used as a model of postmenopausal hypertension and four groups were created: SHAM-operated (SHAM), ovariectomized SHR (OVX), OVX treated for 15 days with conjugated equine estrogens [(CEE) 9.6 µg/Kg/day/po] or CEE associated to testosterone [(CEE+T) 2.85 mg/kg/weekly/im]. Phenylephrine-induced contraction and generation of reactive oxygen species (ROS) were markedly increased in aortic rings from OVX-SHR compared to SHAM rats which were restored by CEE treatment. On the other hand, CEE+T abolished vascular effects by CEE and augmented both systolic and diastolic blood pressure of SHR. Treatment of aortic rings with the CYP/20-HETE synthesis inhibitor HET0016 (1 µM) reduced phenylephrine hyperreactivity and the augmented ROS generation in the CEE+T group. These results are paralleled by the increased CYP4F3 protein expression and activity in aortas of CEE+T. In conclusion, we showed that association of testosterone to estrogen therapy produces detrimental effects in cardiovascular system of ovariectomized hypertensive females via CYP4F3/20-HETE pathway. Therefore, our findings support the standpoint that the CYP/20-HETE pathway is an important therapeutic target for the prevention of cardiovascular disease in menopausal women in the presence of high levels of testosterone.

15.
Am J Physiol Heart Circ Physiol ; 308(7): H723-32, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25637546

RESUMEN

Testosterone has been added to hormone replacement therapy to treat sexual dysfunction in postmenopausal women. Whereas estrogen has been associated with vascular protection, the vascular effects of testosterone are contradictory and the effects of its association with estrogen are largely unknown. In this study we determined the effects of testosterone associated with conjugated equine estrogen (CEE) on vascular function using a model of hypertensive postmenopausal female: ovariectomized spontaneously hypertensive rats. Female spontaneously hypertensive rats were divided into sham-operated, ovariectomized (OVX), and OVX treated for 15 days with either CEE alone (OVX+CEE) or associated with testosterone (OVX+CEE+T). Angiotensin II (ANG II)-induced contraction was markedly increased in aortic rings from OVX compared with sham-operated rats. CEE treatment restored ANG-II responses, a beneficial effect abrogated with CEE+T. CEE treatment also increased endothelium-dependent relaxation, which was impaired in OVX rats. This effect was lost by CEE+T. Treatment of aortas with losartan (ANG-II type-1 receptor antagonist) or apocynin (NADPH-oxidase inhibitor) restored the endothelium-dependent relaxation in OVX and CEE+T, establishing an interplay between ANG-II and endothelial dysfunction in OVX and CEE+T. The benefits by CEE were associated with downregulation of NADPH-oxidase subunits mRNA expression and decreased reactive oxygen species generation. The association of testosterone with CEE impairs the benefits of estrogen on OVX-associated endothelial dysfunction and reactive oxygen species generation in rat aorta by a mechanism that involves phosphorylation of the cytosolic NADPH-oxidase subunit p47(phox).


Asunto(s)
Aorta/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Terapia de Reemplazo de Estrógeno , Estrógenos Conjugados (USP)/farmacología , Hipertensión/metabolismo , Ovariectomía , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Testosterona/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Aorta/metabolismo , Aorta/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Inhibidores Enzimáticos/farmacología , Femenino , Hipertensión/genética , Hipertensión/fisiopatología , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Ratas Endogámicas SHR , Factores de Tiempo , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
16.
PLoS One ; 9(11): e111117, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25369284

RESUMEN

The kallikrein-kinin and renin-angiotensin systems interact at multiple levels. In the present study, we tested the hypothesis that the B1 kinin receptor (B1R) contributes to vascular hypertrophy in angiotensin II (ANG II)-induced hypertension, through a mechanism involving reactive oxygen species (ROS) generation and extracellular signal-regulated kinase (ERK1/2) activation. Male Wistar rats were infused with vehicle (control rats), 400 ng/Kg/min ANG II (ANG II rats) or 400 ng/Kg/min ANG II plus B1 receptor antagonist, 350 ng/Kg/min des-Arg(9)-Leu(8)-bradykinin (ANGII+DAL rats), via osmotic mini-pumps (14 days) or received ANG II plus losartan (10 mg/Kg, 14 days, gavage - ANG II+LOS rats). After 14 days, ANG II rats exhibited increased systolic arterial pressure [(mmHg) 184 ± 5.9 vs 115 ± 2.3], aortic hypertrophy; increased ROS generation [2-hydroxyethidium/dihydroethidium (EOH/DHE): 21.8 ± 2.7 vs 6.0 ± 1.8] and ERK1/2 phosphorylation (% of control: 218.3 ± 29.4 vs 100 ± 0.25]. B1R expression was increased in aortas from ANG II and ANG II+DAL rats than in aortas from the ANG II+LOS and control groups. B1R antagonism reduced aorta hypertrophy, prevented ROS generation (EOH/DHE: 9.17 ± 3.1) and ERK1/2 phosphorylation (137 ± 20.7%) in ANG II rats. Cultured aortic vascular smooth muscle cells (VSMC) stimulated with low concentrations (0.1 nM) of ANG II plus B1R agonist exhibited increased ROS generation, ERK1/2 phosphorylation, proliferating-cell nuclear antigen expression and [H3]leucine incorporation. At this concentration, neither ANG II nor the B1R agonist produced any effects when tested individually. The ANG II/B1R agonist synergism was inhibited by losartan (AT1 blocker, 10 µM), B1R antagonist (10 µM) and Tiron (superoxide anion scavenger, 10 mM). These data suggest that B1R activation contributes to ANG II-induced aortic hypertrophy. This is associated with activation of redox-regulated ERK1/2 pathway that controls aortic smooth muscle cells growth. Our findings highlight an important cross-talk between the DABK and ANG II in the vascular system and contribute to a better understanding of the mechanisms involved in vascular remodeling in hypertension.


Asunto(s)
Hipertensión/patología , Sistema Calicreína-Quinina/fisiología , Sistema Renina-Angiotensina/fisiología , Angiotensina II/toxicidad , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Aorta/metabolismo , Aorta/patología , Presión Sanguínea/efectos de los fármacos , Antagonistas del Receptor de Bradiquinina B1/farmacología , Células Cultivadas , Sinergismo Farmacológico , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Hipertrofia/metabolismo , Sistema Calicreína-Quinina/efectos de los fármacos , Losartán/farmacología , Losartán/uso terapéutico , Masculino , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptor de Bradiquinina B1/agonistas , Receptor de Bradiquinina B1/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Superóxidos/metabolismo
17.
Steroids ; 78(3): 341-6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23261957

RESUMEN

OBJECTIVE: The increased risk of cardiovascular diseases in postmenopausal women has been linked to the decrease in plasma estrogen levels. Preparation of conjugate equine estrogens (CEE) is one of the most routinely used hormone therapy in postmenopausal women. However, studies on the vascular effects of CEE are still sparse and the mechanism of action is not completely elucidated. In this context, we have determined the effects of CEE in the vascular oxidative stress observed in ovariectomyzed (OVX) spontaneously hypertensive rats (SHR). Mechanisms by which CEE interferes with redox-sensitive pathways and endothelial function were also determined. RESULTS: Aortas from OVX rats exhibited increased generation of reactive oxygen species (ROS), NADPH oxidase activity and reduced catalase protein expression, compared to aortas from sham SHR. Endothelium-intact aortic rings from OVX were hyperreactive to NE when compared to Sham aortas. This hyperreactivity was corrected by superoxide dismutase (SOD), catalase, and endothelium removal. Treatment of OVX-SHR with CEE reduced vascular ROS generation, NADPH oxidase activity, enhanced SOD and catalase expression and also corrected the NE-hyperreactivity in aortic rings from OVX-SHR. CONCLUSION: Our study indicates a potential benefit of CEE therapy through a mechanism that involves reduction in oxidative stress, improving endothelial function in OVX hypertensive rats.


Asunto(s)
Aorta/efectos de los fármacos , Estrógenos Conjugados (USP)/farmacología , Hipertensión/tratamiento farmacológico , Ovariectomía , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Animales , Aorta/metabolismo , Catalasa/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Caballos , Humanos , Hipertensión/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...